應用機率模型作業2解答

22.

By the independent of trail, after two points, there are three cases:

- (i) A wins with probability p^2 .
- (ii) B wins with probability $(1-p)^2$.
- (iii) Turn to the origin with 2p(1-p).

(*a*)

The game end at 2n points if it turn to origin after 2(n-1) points, and then A or B wins at the next 2 points.

$$\therefore P(\text{the game end at 2n points})$$
$$=[2p(1-p)]^{n-1} \cdot [p^2 + (1-p)^2]$$

(*b*)

P(A wins)

= P(A wins at 2 points) + P(A wins at 4 points) + ...

=
$$p^2 + [2p(1-p)] \cdot p^2 + [2p(1-p)]^2 \cdot p^2 + ...$$

$$= \frac{p^2}{1 - [2p(1-p)]} = \frac{p^2}{1 - 2p + 2p^2}$$

We could know that their parent are both (A, a). Note that 'A' is black gene, and 'a' is brown one.

(a)

$$P(\text{Pure black}|\text{black})$$

$$= \frac{P((\text{Pure black}) \cap (\text{black}))}{P(\text{black})}$$

$$= \frac{1/4}{3/4} = \frac{1}{3}$$

(*b*)

E:Pure black, E^c :not pure black

F: five offsprings black

$$P(E|F)$$

$$= \frac{P(E \cap F)}{P(F)}$$

$$= \frac{P(F|E) \cdot P(E)}{P(F|E) \cdot P(E) + P(F|E^c) \cdot P(E^c)}$$

$$= \frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3} + \left(\frac{1}{2}\right)^5 \cdot \frac{2}{3}} = \frac{16}{17}$$

(*a*)

Knowing that values of $\{N_1, N_2, ..., N_n\}$ is equivalent to knowing the relative ordering of the elements $\{a_1, ..., a_n\}$.

For instance, if $N_1 = 0$, $N_2 = 1$, $N_3 = 1$, then in the random permutation a_2 is before a_3 , which is before a_1 .

The independence result follows for clearly the number of $a_1,...,a_i$ that follow a_{i+1} does not probabilistically depend on the relative ordering of $a_1,...,a_i$.

$$\begin{split} &(b) \\ &P(N_i = k) \\ &= P(\text{there are k units in } a_1, a_2, ..., a_{i-1} \text{ proceed } a_i) \\ &= \frac{C_k^{i-1} \cdot k \,! \left[(i-1) - k \right] ! \left[\left(i+1 \right) \cdot \left(i+2 \right) \cdot ... \cdot \left(n-1 \right) \cdot n \right]}{n!} = \frac{1}{i} \end{split}$$

(c)
$$E(N_i) = \frac{i-1}{2}$$

$$\therefore E(N) = E(\sum_{i=1}^n N_i) = \frac{n \cdot (n-1)}{4}$$

$$Var(N_{i}) = E(N_{i}^{2}) - [E(N_{i})]^{2}$$

$$= \frac{(i-1)(2i-1)}{6} - [\frac{(i-1)}{2}]^{2} = \frac{i^{2}-1}{12}$$

$$\therefore Var(N) = Var(\sum_{i=1}^{n} N_{i}) \stackrel{id}{=} \sum_{i=1}^{n} Var(N_{i})$$

$$= \frac{1}{12} [\frac{1}{6}n(n+1)(2n+1) - n]$$

$$= \frac{2n^{3} + 3n^{2} - 5n}{72}$$