應用機率模型作業 5 解答

Chapter5: #10, #12, #43

1.

(a).

$$E(MX | M = X) = E(M^2 | M = X)$$

Since we know that (M | M = X) has the same distribution with $M \sim \exp(\lambda + \mu)$

$$\therefore E(M^2|M=X) = E(M^2) = \frac{2}{(\mu+\lambda)^2}.$$

(b).

Given that M = Y (i.e. Y < X), by the lack of memory property

X can be denote as M+X' where X' has the same distribution with X, and is independent with M.

$$\therefore E(MX | M = Y) = E(M(M + X') | M = Y) = E(M^2 | M = Y) + E(MX' | M = Y)$$

$$= E(M^2) + E(M)E(X') = \frac{2}{(\lambda + \mu)^2} + \frac{1}{\lambda(\lambda + \mu)}.$$

(c).

$$Cov(X,M) = E(XM) - E(X)E(M)$$

where,

$$E(XM) = EE(XM|M) = E(XM|M = X)P(M = X) + E(XM|M = Y)P(M = Y)$$
$$= \frac{2}{(\lambda + \mu)^{2}} \frac{\lambda}{\lambda + \mu} + \left(\frac{2}{(\lambda + \mu)^{2}} + \frac{1}{\lambda(\lambda + \mu)}\right) \frac{\mu}{\lambda + \mu}.$$

hence,

$$Cov(X,M) = \frac{2}{(\lambda + \mu)^2} \frac{\lambda}{\lambda + \mu} + \left(\frac{2}{(\lambda + \mu)^2} + \frac{1}{\lambda(\lambda + \mu)}\right) \frac{\mu}{\lambda + \mu} - \frac{1}{\lambda(\lambda + \mu)}.$$

2.

(a).

By the lack of memory property,

$$\begin{split} P\left(X_{1} < X_{2} < X_{3}\right) &= P\left(X_{2} < X_{3} \left| X_{1} = \min\left(X_{1}, X_{2}, X_{3}\right)\right) P\left(X_{1} = \min\left(X_{1}, X_{2}, X_{3}\right)\right) \\ &= P\left(X_{2} < X_{3}\right) P\left(X_{1} = \min\left(X_{1}, X_{2}, X_{3}\right)\right) \\ &= \frac{\lambda_{2}}{\lambda_{2} + \lambda_{3}} \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2} + \lambda_{3}}. \end{split}$$

(b).

$$\begin{split} P\Big(X_{1} < X_{2} \, \Big| X_{3} &= \max \big(X_{1}, X_{2}, X_{3}\big)\Big) = \frac{P\big(X_{1} < X_{2} < X_{3}\big) + P\big(X_{2} < X_{1} < X_{3}\big)}{P\big(X_{1} < X_{2} < X_{3}\big) + P\big(X_{2} < X_{1} < X_{3}\big)} \\ &= \frac{\frac{\lambda_{2}}{\lambda_{2} + \lambda_{3}} \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2} + \lambda_{3}}}{\frac{\lambda_{2}}{\lambda_{2} + \lambda_{3}} \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2} + \lambda_{3}} + \frac{\lambda_{1}}{\lambda_{1} + \lambda_{3}} \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2} + \lambda_{3}}} \\ &= \frac{\frac{1}{\lambda_{2} + \lambda_{3}}}{\frac{1}{\lambda_{2} + \lambda_{3}} + \frac{1}{\lambda_{1} + \lambda_{3}}}. \end{split}$$

(c).

$$E\left(\max X_{i} \left| X_{1} < X_{2} < X_{3}\right.\right) = E\left(X_{3} \left| X_{1} < X_{2} < X_{3}\right.\right)$$
 by the lack of memory property, given on $X_{1} < X_{2} < X_{3}$,

$$X_3 \equiv X_2 + X_3$$

, where X_3 ' ~ $\exp(\lambda_3)$ is independent with X_1, X_2, X_3 .

$$\therefore E(\max X_i | X_1 < X_2 < X_3) = E(X_3') + E(X_2 | X_1 < X_2 < X_3)$$

$$= E(X_3') + E(X_2 | M_1 = X_1, X_2 < X_3)$$

,where M_1 denote min (X_1, X_2, X_3) .

also by the lack of memory property again, given on $M_1 = X_1, X_2 < X_3$,

$$\begin{split} E\left(X_{2}\left|M_{1}=X_{1},\;X_{2}< X_{3}\right.\right) &= E\left(X_{1}+X_{2}\left|M_{1}=X_{1},\;X_{2}\right|< X_{3}\right) \\ &= E\left(X_{1}\left|M_{1}=X_{1}\right.\right) + E\left(X_{2}\left|X_{2}\right|< X_{3}\right) \end{split}$$

, where $X_2' \sim \exp(\lambda_2)$ is independent with M_1, X_1, X_3 .

Hence,

$$\begin{split} E\Big(\max X_i \, \big| X_1 < X_2 < X_3 \Big) &= E\big(X_3\,'\big) + E\Big(X_1 \big| M_1 = X_1 \Big) + E\Big(X_2\,' \big| X_2\,' < X_3 \Big) \\ &= E\Big(X_3\,'\big) + E\Big(\min\big(X_1, X_2, X_3 \big) \Big) + E\Big(\min\big(X_2, X_3 \big) \Big) \\ &= \frac{1}{\lambda_1 + \lambda_2 + \lambda_3} + \frac{1}{\lambda_2 + \lambda_3} + \frac{1}{\lambda_3} \,. \end{split}$$

(d).

$$\begin{split} E\left(\max X_{i}\right) &= \sum_{i \neq j \neq k} E\left(\max\left(X_{1}, X_{2}, X_{3}\right) \middle| X_{i} < X_{j} < X_{k}\right) P\left(X_{i} < X_{j} < X_{k}\right) \\ &= \sum_{i \neq j \neq k} \left(\frac{1}{\lambda_{1} + \lambda_{2} + \lambda_{3}} + \frac{1}{\lambda_{j} + \lambda_{k}} + \frac{1}{\lambda_{k}}\right) \left(\frac{\lambda_{j}}{\lambda_{j} + \lambda_{k}} \frac{\lambda_{i}}{\lambda_{1} + \lambda_{2} + \lambda_{3}}\right). \end{split}$$

3.

Let T denote the time until the next arrival, S_i denote the service time at server i, i = 1, 2 since the exponential random variable has lack of memory property, so

$$P(T > S_1 + S_2) = P(T > S_1 + S_2 | T > S_1) P(T > S_1) = P(T > S_2) P(T > S_1) = \frac{\mu_2}{\lambda + \mu_2} \frac{\mu_1}{\lambda + \mu_1}.$$