跳到主要內容區
stat

 

 

黃提源 榮譽退休教授

ImgDesc

姓名:黃提源
職稱:榮譽退休教授
學歷:美國威斯康辛大學博士
研究領域:無母數統計學、實驗設計與分析
研究室:綜合三館815室分機:33170
Email:Email

 

學歷

  • 美國威斯康新大學(Madison)統計學博士,1972
  • 國立清華大學數學碩士,1966
  • 國立台灣師範大學數學學士,1964 

 

經歷

       一、教學研究

  • 真理大學特聘教授,2005~
  • 國立清華大學榮譽退休教授,2005~
  • 國立清華大學教授,1978~2005
  • 日本文部省統計數理研究所外來研究員,1989~1990
  • 國立清華大學應用數學研究所所長,1974~1975、1978~1979、1982~1985
  • 英國倫敦大學學院名譽研究員,1979~1980
  • 國立清華大學副教授,1972~1978
  • 國立台灣師範大學講師,1967~1968
  • 台北縣三重初級中學老師,1963~1964 

 

    二、學術活動

  • 中國機率統計學會理事,1990~2003
  • 台灣智慧科技與應用統計學會理事,2000~2004
  • 中國統計學社理事,1982~2009
  • 清華大學第一屆校長遴選委員會委員,1993
  • 中國統計學報副編輯,1974~1982
  • 中華民國數學學會理事長,1982
  • 國際數學學會理事會中華民國代表,1982
  • 中華民國數學學會理事,1974~1982
  • 中國數學雜誌副編輯,1974~1978 

 

    三、學術榮譽

  • 中國統計學社首位終身成就獎,1997
  • 國際統計學會會士,1986
  • 教育部大學自然及應用科學教學資料獎,1986
  • 中國統計學社統計教育榮譽獎,1982

 

    四、專業服務

  • 行政院主計處普查會顧問,1984~1988
  • 考試院甲等考典試委員,1976
  • 考試院高普考典試委員,1988~1989、1996~1998
  • 教育部國立編譯館數學名詞審查委員,1977~1979
  • 教育部高中入學考試專案研究小組委員,1987
  • 教育部修訂高中數學課程標準委員,1982~1988
  • 工業技術研究院量測中心顧問,1982、1988~1989
  • 中國鋼鐵公司專案研究顧問,1984
  • 中國石油公司專案研究顧問,1978~1979
  • 經濟部中央標準局專利審查委員,1973~1975

 

    五、公益服務

  • 新竹市公害防治協會創會會長,1987~1991
  • 新竹市環保局「公害糾紛調解委員會」委員,1998~2000
  • 台灣環境保護聯盟學術委員,1987
  • 新環境基金會董事,1987
  • 綠色和平組織執行委員,1988
  • 環保署「資源回收費率審議委員會」委員,1997~2001
  • 新竹科學工業園區環保指導委員會委員,1998~1999
  • 新竹科學工業園區環保推動委員會委員,1998~1999
  • 國科會新竹科學工業園區環境保護監督小組委員及召集人,1999~2005
  • 國科會新竹科學園區開發行為環境影響評估追蹤小組委員,2000~2004
  • 環保署公害糾紛裁決委員會委員,2005~2008
  • 財團法人環境資源研究發展基金會監察人,2005~20

 

    六、社團活動

  • 台灣教授協會第二屆副會長,1990
  • 「廢國大、反獨裁」大遊行副總指揮,1991
  • 清華大學教授聯會會長、總幹事,1988
  • 「新竹風」雜誌社創社會長,1991
  • 新竹市中區扶輪社社友、國際主委及環保主委等,1993
  • 野百合學運積極支持者,1990

 

研究領域         

  • 無母數統計學、實驗設計與分析、隨機過程、分配理論、抽樣理論 

 

研究成果

  • Huang,P.H. and Hwang,T.Y., 2006, ” On new moment estimation of parameters of generalized gamma distribution using its characterization”, Taiwanese Journal of Mathematics, 10, 4, 1083-1093. (SCI). 
  • Huang,P.H. and Hwang,T.Y., 2005, ” The inference of Gini's mean difference” International Journal of Pure and Applied Mathematics, 25, 1, 39-49, Bulgaria. (SCI).
  • Hwang,T.Y. and Huang,P.H.,2002,”On new moment estimation of parameters of gamma distribution using its characterization” Annals of the Institute of Statistical Mathematics,54,4,840-847,Japan.(SCI).
  • Hwang,T.Y. and Lin,Y.K.,2000,”On the distribution of the sample heterogeneity of Molecular polymer.” Tamsui Oxford Journal of Mathematical Sciences,16,2,133-149,Taiwan.
  • Hwang,T.Y. and HU,C.Y.,2000,”On some characterizations of population distributions,” Taiwanese Journal of Mathematics,4,3,427-437,Taiwan. (SCI).
  • Hwang,T.Y. and Hu,C.Y.,1999,”On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation,” Annals of the Institute of Statistical Mathematics,51,4,749-753,Japan.(SCI).
  • Hwang,T.Y. and Joy Chen,1997,”On the optimal life testing schedule,” Journal of Chinese Statistical Association,35,2,Taiwan.
  • Hwang,T.Y. and Hu,C.Y.,1997,”On an integro-functional equation arising in order statistics,” Bulletin of the Institute of Mathematics,25,3,Taiwan. (SCI).
  • Hwang,T.Y. and Hu,C.Y.,1996,”On the characterization of normality for the class of spherical distribution,” Chinese Journal of Mathematics,24,1,Taiwan. (SCI).
  • Hwang,T.Y. and Lee,W.T.,1995,”On the distribution of normalized range in a small sample,” Journal of Chinese Statistical Association,33,4,Taiwan.
  • Hwang,T.Y. and Hu,C.Y.,1994,”On the joint distribution of Grubbs’s statistics,” Annals of the Institute of Statistical Mathematics.46,4,769-775,Japan.(SCI).
  • Hwang,T.Y. and Hu,C.Y.,1994,”The best lower bound of sample correlation coefficient with ordered restriction,” Statistics and Probability Letter,19,5.195-198.(SCI).
  • Hwang,T.Y. and Hu,C.Y.,1994,”On the distribution of studentized order statistics.” Annals of Institute of Statistical Mathematics,46,1,165-177,Japan.(SCI).
  • Hwang,T.Y. and Hu,C.Y.,1990,”More Comparisons of the MLE with UMVUE for exponential families.” Annals of the Institute of Statistical Mathematics,42,1,65-75.Japan.(SCI).
  • Hwang,T.Y. and Lin,T.Z.,1986,”Balances treatment incomplete block design for comparing treatments with a control: minimal complete sets of generator designs for K=3,p=10.” Tamkang journal of Mathematics,17,2,169-182.Taiwan.
  • Hwang,T.Y.,1985,”Large deviation of linear rank statistics.” Chinese Journal of Mathematics,13,1,49-57.Taiwan. (SCI).
  • Hwang,T.Y.,1982,”Bahadur efficiency of one sample Kolmogorov-Simrnov test for normal alternatives.” Sankhay’A,44,23-31.India.(SCI).
  • Hwang,T.Y. and Chiang,S.F.,1981,”Bahadur efficiency of two equal sample likelihood ratio test for exponential  alternatives.” Journal of the Chinese Statistical Association, Special issue, 1-11.Taiwan.
  • Hwang,T.Y. and Hwang,P.H.,1981,”On the effect of the student’s test under uniform population. ” Journal of the Chinese Statistical Association, Special issue, 1-11.R.O.C.
  • Hwang,T.Y. and Wang,N.S.,1979,”On best fractional linear generation function bounds.” Journal of Applied Probability, 16,449-453,U.K.(SCI).
  • Hwang,T.Y. and T.F.Tsay,1978,”The treatment of ties in some linear rank test-when the underlying distribution is discrete.” Communication is Statistics,A7(6),815-827.U.S.A.(SCI).
  • Hwang,T.Y. and J.T.Hwnag,1978,”Maximum likelihood estimate of the age Galton-Warson process with poisson offspring distribution.” Bulletin of the Institute of Mathematics, Academia Sinica,6,1,203-213.Taiwan. (SCI).
  • Hwang,T.Y.,1977,”On the probability of large deviation of linear rank Statistics with continuity assumption.” Chinese Journal of Mathematics,5,1,27-42.Taiwan. (SCI).
  • Hwang,T.Y. and J.H.Klotz,1977,”On the approach to limiting Bahadur efficiency.” Journal of Chinese Statitical Association, 15,1,5444-5447.Taiwan.
  • Hwang,T.Y. 1976,”On the Sample mean.” Journal of Chinese Statistical Association,14,3,5290-5312.Taiwan.
  • Hwang,T.Y. and J.H.Klotz,1975,”Bahadur efficiency of linear rank statistics.” Annals of Statitics,3,4,947-954.U.S.A.(SCI).
  • Hwang,T.Y. and Chang,H.L.1975,”Chernoff efficiency of likelihood ratio test.” Journal of Mathematical & Natural Science,1,79-84,Taiwan.
瀏覽數: